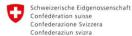


USING HYDROGEN AS FEEDSTOCK


Blanca Arias Serrano, Researcher at The Iberian Centre for Research in Energy Storage (CIIAE)

Raw Materials Week / Brussels (side event), November 2025

17/11/2025

ALCHEMHY:

Alternative routes for basic chemicals production using hydrogen as feedstock

Coordinator:

CIRCE, fundación circe centro de investigación de recursos y consumos energeticos

Reduce global emissions

Decarbonising
Europe's chemical backbone

NECZERO 2050

green hydrogen as feedstock

ALCHEMHY started

in October 2024!

VIDEO!

SCAN CODE

CODE

INNOVATION

The Consortium - 16 partners; 8 EU countries

x7 Research institutions

- CIRCE (Coordinator)
- Kemijski Institut
- CIIAE ←
- FBK Fondazione Bruno Kessler
- AIT Austrian Institute of Technolog
- CORE Innovation Centre
- ICCS

x3 Industries

- UBE Corporation Europe
- Sonatrach Raffineria Italiana
- Casale

• x2 Universities

- Universidade de Aveiro
- Universiteit Antwerpen

• x4 SMEs / Innovation organisations

- Bluenergy Revolution
- White Research
- Hysytech
- Recatalyst

The Challenges

High emissions & energy use: The chemical industry is a major global CO₂ emitter, relying heavily on fossil-based raw materials.

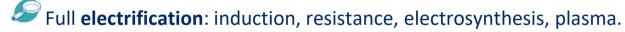
Ammonia & methanol dependence: These essential chemicals are produced using hydrogen mainly derived from fossil fuels.

Big climate impact: Ammonia alone causes ~2% of global emissions, while methanol adds significantly through coal and natural gas use.

The Solution

Goal → Decarbonise ammonia & methanol production using renewable hydrogen.

→ Demonstrate 4 sustainable, cost-effective, fully electrified pathways


Methanol routes

- Small-flexible methanol reactor (SFMR)
- Plasma catalytic hydrogenation (PCH)

Ammonia routes

- Magnetic-heated sorption- enhanced reactor (MSER)
- Direct electrochemical synthesis (DESA)

Key features

- Hybrid digital twins for design & operation (MSER, SFMR) and new catalyst materials for higher yields.
- Industrial integration analysis: technical, economic & environmental.
- Replication, upscaling & business models for market adoption.

The Target audiences

Who will benefit from ALCHEMHY's results?

ALCHEMHY's objectives

1

Develop and test 4
innovative electricitybased processes to
produce ammonia and
methanol using hydrogen
as a feedstock, moving
them to TRL 5 and
reducing emissions

2

Create and scale up
new catalyst
materials to boost
performance, lower
environmental
impact, and reduce
dependence on
CRMs

3

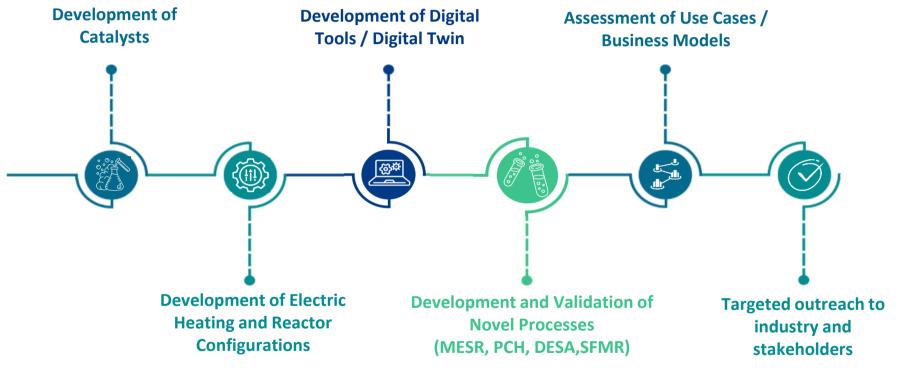
Develop advanced
digital models and
decision tools (like
Digital Twins and Albased systems) to help
design, optimise and
scale up hydrogenbased chemical
production

ALCHEMHY's objectives

4

Build and validate 3
pilot systems for
ammonia and
methanol production
at TRL 5-6 to prove
safety, efficiency
and market
readiness

5


Assess how these processes can be used in real-world industry (e.g. for making fertilisers or plastics), including life cycle and economic analysis, and define a roadmap for future deployment.

6

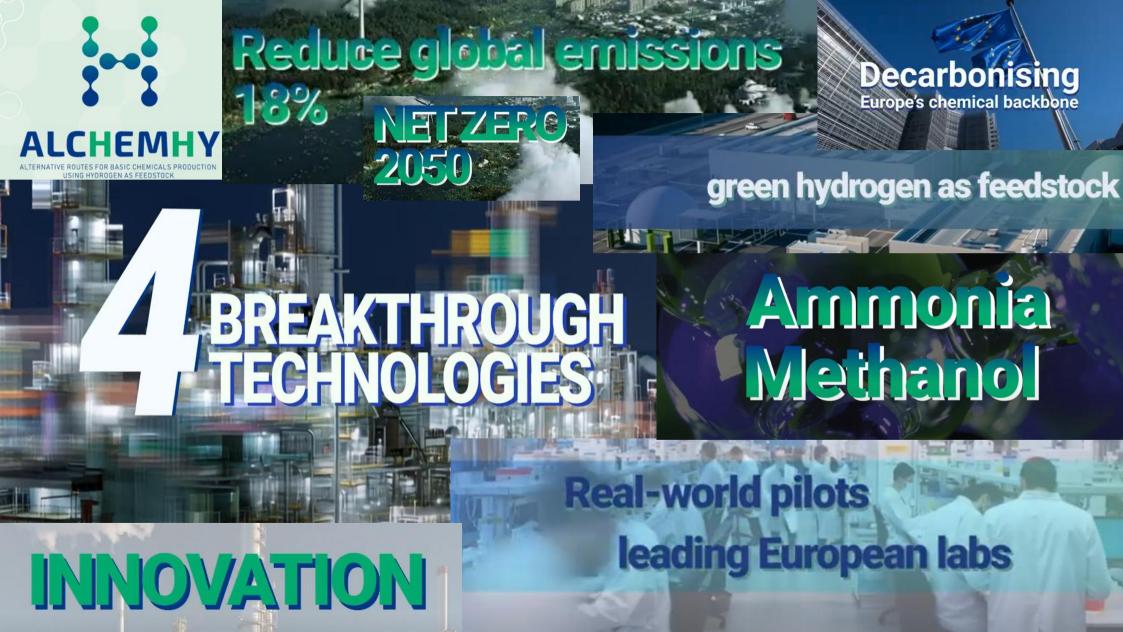
Share results widely,
build strong industry
links and develop
commercial strategies to
turn ALCHEMHY
innovations into realworld solutions across
the EU.

ALCHEMHY's key activities

ALCHEMHY's impact

- Proven H₂ feedstock solutions
- Scale-up & replication guidelines
- New process knowledge
- Synergy creation
- Smarter, more flexible process control

Market & Economic


- Less reliance on imported commodities
- Fossil fuel substitution
- Policy support with data
- Lower CAPEX needs
- New finance & business models

Societal & Environmental

- More renewables in industry
- Safer, cleaner processes
- Reduced CO₂ & pollutants
- Upskilled industrial workforce

sinomm/A

lonshieM

MSER

 $\begin{array}{c} TRL_{M0} \rightarrow 4 \\ TRL_{M48} \rightarrow 6 \end{array}$

Thermo-catalytic process

Magnetic-heated Sorption Enhanced Reactor for flexible ammonia synthesis

DESA

 $TRL_{M0} \rightarrow 3$ $TRL_{M48} \rightarrow 5-6$

Thermo-Electro-catalytic process

Direct Electrochemical
Synthesis
of Ammonia
in Solid Oxide Cells

SFMR

 $\frac{\text{TRL}_{\text{M0}} \rightarrow 4}{\text{TRL}_{\text{M48}} \rightarrow 6}$

Thermo-catalytic process

Small, Flexible Methanol Reactor designed for fast response and modularity

PCH

 $TRL_{M0} \rightarrow 3$ $TRL_{M48} \rightarrow 5-6$

Thermo-Plasma-catalytic process

Plasma-Catalytic Hydrogenation for methanol production

Small-Flexible Methanol Reactor (SFMR)

Description:

- Modular methanol synthesis on high temperature and under relatively low-pressure conditions
- Fast response time for dynamic RES
- Includes Thermal Energy Storage (TES) for optimal heat reuse

Key Features:

- Flexible to RES fluctuations
- Modular, scalable, and retrofittable
- Containerised for cost-effective deployment

Potential:

- Replicable in CCU systems (e.g. ethanol, DME)
- Other: catalyst/sorbent strategies adaptable to DME, olefins, ammonia

REvolutionising the way we make fuel cell CATALYSTs.

Small-Flexible Methanol Reactor (SFMR)

Pilot testing:

- Construction of a methanol synthesis reactor able to follow the RES fluctuation and with a simplified design to improve its modularity and demonstrated at BER facilities.
- The focus is on demonstrating reliable performance,
 safe operation, and scalability

Plasma-Catalytic Hydrogenation (PCH)

Description:

- Dielectric barrier discharge plasma reactor for CO₂ hydrogenation
- Operates at room temperature and atmospheric pressure
- Uses **catalysts** to boost methanol selectivity

Key Features:

- Thermodynamically favourable low-temperature conditions
- Rapid on/off switching for RES alignment
- Operates with impure feeds and variable H₂
- Low CAPEX

Potential:

- Suitable for stable molecules (N₂, CO₂, CH₄)
- **Different product**s: syngas, fuels, olefins, ammonia
- Potential use in other reactions such as water-gas shift, hydrocarbon/ammonia cracking

REvolutionising the way we make fuel cell CATALYSTs.

Plasma-Catalytic Hydrogenation (PCH)

Pilot testing:

- At UANTWERPEN, methanol
 production is demonstrated using
 plasma-catalytic and thermo-catalytic reactors
- The pilot validates continuous
 operation, process optimization,
 and integration with green
 hydrogen from PEM electrolysers.

Magnetic-Heated Sorption-Enhanced Reactor (MSER)

Description:

- Electrified ammonia synthesis via induction heating and sorption
- Lower temperature and pressure vs. Haber-Bosch
- Validated at bench scale in HySTrAm
- Sorbents offer high capacity, selectivity, and stability across variable temperatures

Key Features:

- Fast ramp-up times
- Tuneable conversion: from minimal to complete
- Direct reactor heating boosts energy efficiency
- Reversible: can crack ammonia into H₂ and N₂

Replication Potential:

Use in CO₂ hydrogenation, bio-chemical upgrading (e.g. levulinic acid, furfural), and ammonia cracking

Magnetic-Heated Sorption-Enhanced Reactor (MSER)

Pilot testing:

- Pilot activities at CIIAE focus on validating lab-scale ammonia
 production in a continuous process
- The MESR is tested for efficiency, safety, and integration with green hydrogen, while data collected support digital twin validation and process optimization

• Direct Electrochemical Synthesis of Ammonia (DESA)

Description:

- Single-step ammonia synthesis using hydrogen, nitrogen, and electricity
- High-temperature electrochemical route in solid oxide cells (SOCs)
- Operates at 400-450 °C with non-PGM catalysts

Key Features:

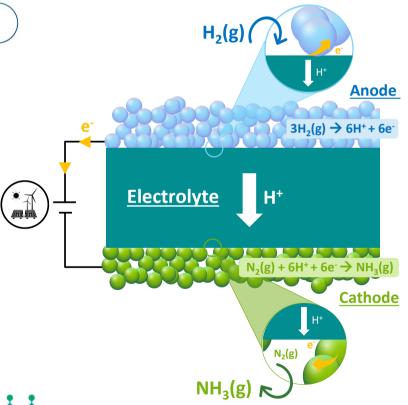
- Achieves high efficiency using waste heat
- Tolerant to thermal/redox stress

Replication Potential:

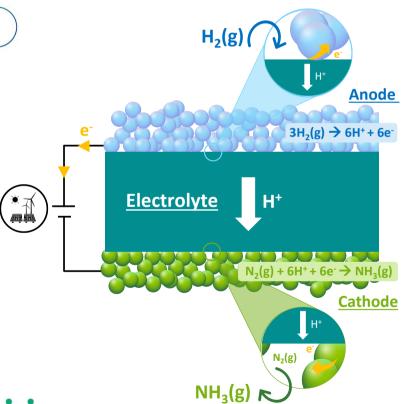
 Decentralised ammonia production in agriculture, transport, and energy storage, ammonia cracking

Direct Electrochemical Synthesis of Ammonia (DESA)

Pilot testing:

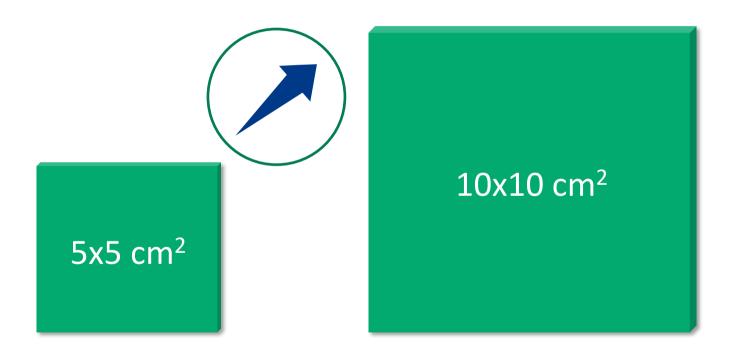

- Pilot testing at **CIIAE** will evaluate the DESA technology under relevant operating conditions.
- The focus is on demonstrating process performance, safety, and operational stability, while providing data for model validation and future scale-up.

Direct Electrochemical Synthesis of Ammonia (DESA)



- Electrochemical cell based on protonconducting ceramic materials
- Operation conditions:
 - 400-550 °C
 - 1 bar
- Key challenge: Competing processes at the cathode side:
 - H₂ evolution reaction (HER)
 - Thermal decomposition of NH₃

Direct Electrochemical Synthesis of Ammonia (DESA)



- **ANODE:** cermets → Ni + electrolyte
- **ELECTROLYTE:** perovskites + sintering aids (e.g. NiO, CuO, ZnO)
- \rightarrow Ba(Ba,Zr,Y,Yb)O_{3- δ} (BCZYY)
- **CATHODE:** electrolyte + perovskites + electrocat. (Ru, Fe, Co, Ni)
- \rightarrow (Ba,Sr)(Co,Fe,Mo)O₃₋₈ (BSCFM)
- \rightarrow Sr(Fe,Ti,Mo)O_{3-d} (SFT)
- \rightarrow (Sr,La)TiO_{3-d} (SLT)
- \rightarrow (La,Sr)_{1-x}(Cr,Mg)O_{3-d} (LSCM)
- \rightarrow (La,Sr)(Fe,Co)O₄ (LSFC)

Direct Electrochemical Synthesis of Ammonia (DESA)

DESA scale

Thank you!

Visit: alchemhyproject.eu

Contact us: info@alchemhyproject.eu

Visit: ALCHEMHY Project EU

Reduce 18%

Presenter: Blanca Arias Serrano (CIIAE)

Contact details: blanca.arias@ciiae.org

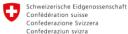
SCAN CODE

Subscribe to our NEWSLETTERS

g European labs

green hydrogenedstock

INNOVATION



Funded by the European Union's Horizon Europe Research and Innovation Actions programme under grant agreement No 101177996

Project funded by

Federal Department of Economic Affairs, Education and Research EAER State Secretariat for Education, Research and Innovation SERI